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Note 

A New Expansion Method for Computing 67 for Reactant 
Distribution Functions* 

1. INTRODUCTION 

Fusion reactor studies [1, 21 involve computation of the reaction rate for two 
reacting species a and b: 

R = j- dv j- dv’ h(v) h(v’) 4~) u, 

where R is the number of reactions per unit volume per unit time, f, and fb are the 
distribution functions, u is the reaction cross section, and u is the relative velocity 

u= Iv-V’I. 

It is often convenient to write 

R = n,n,Gii, 

where n, and nb are the densities given by 

ni = h(v) dv 
f 

(i = a, b) 

and Ov is the reaction rate parameter, a quantity which depends on the form of the 
normalized distribution functions: 

aV= & j- dv j dv’ .faW X6”) 44 u. (1) 

In this note we present a very fast method [Eq. (8)] for computing aV for distri- 
butions which are independent of the azimuthal angle C# in spherical coordinates. 
The method is based on an expansion in Legendre polynomials. Hence, it can be very 
conveniently adapted to existing Fokker-Planck codes in which Legendre expansions 
of the distribution functions are already computed to facilitate evaluation of the 
collision operator [2]. This method is compared with two others, and found to be the 
most economical for given accuracy. 

* Work performed under the auspices of the U.S. Energy Research & Development Administration, 
contract No. W-7405~Eng-48. 
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2. DERIVATION OF THE METHOD 

Assume distribution functionsf,(v, 0) andf,(v, S), where zi and B are the usual radial 
and polar angle variables in spherical coordinates in velocity space. To derive the 
formula for aV which is most convenient for computation, it is necessary to make 
a change of variables in performing the integration over v’ in Eq. (1). The new 
variables are the coordinates v’, 6,, , and & in a spherical coordinate system in 
which the polar axis is along the vector v. (See Fig. 1) The azimuthal angle & is 

FIG. 1. Coordinate system. The axes labeled ws , w, , and w. are the Cartesian axes in the new 
coordinate system used to represent v’. The w,-axis lies in the wB-u, plane. 

measured from the plane which includes v and the polar axis in the original (v, 9, 4) 
coordinate system, and 13,~ is simply the angle between v and v’. 

In terms of these coordinates, (1) becomes 

s 

m 
X vf2 dv’ 

I 
ff sin e12 de,, 2?r d+,,hW, 0 “(4 u. (2) 

0 0 0 

Note that the angle 8 between v’ and the original polar axis is a function of 0, 8,, , 
and 412 . It can be shown that 

cos 8’ = cos 8 cos e,, + sin e sin e12 cos $r2 . (3) 
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Note also that the relative velocity is a function only of v, a’, and t& : 

u = (v” + V’Z - 2vv’ cos e12)li2, 

and that the integration over r& is trivial. 
The distribution functions are expressed as a Legendre series: 

.m, 0) = f FilW P&OS 0) 
l=O 

(i = a, b), 

(4) 

(5) 
where 

21+1 n 
Filil(4 = 2 J sin 0 de P,(COS e)fi(v, e). 

0 

This expansion is now inserted in Eq. (2) forfa and fb , and the addition theorem for 
spherical harmonics [3] 

P,(COS 0 = $, t + ;ii PP(COS e) P,~COS e12) cos m+12 

is used to evaluate the Legendre functions in the expansion of fb . The result is 

aU= & Jo- v2 dv I sin e d0 5 F&V) P,(COS 8) l=o 

f 

m 
X vf2 dv’ * sin e12 de,, U(U) u f &(v') 

0 I 0 n=O 

x ,i, IJ: 3 1;; CYcos 0) P,%os e,,) Jr d$,, cos mf#12 . 

Noting that the q$2 integration is nonzero only if m = 0, so that only Pno = P, 
appears, and using the orthogonality of the Legendre polynomials on the t9 domain, 
we have 

Iffi v2 dv F,,(v) Iorn v’~ dv’ &(v’) 

X 
s 

n sin e12pl(c0s e12) U(U) u dOI2 , (6) 
0 

where u is obtained from Eq. (4). 
This formula for aV is evaluated by truncating the series at 1 = L, and performing 

the three integrations numerically. The Legendre coefficients F,, and Fbl are given 
on a common velocity mesh vj (j = 1, 2,..., J), and a quadrature formula 

s omf(v) dv E i cjf(vj) 
j=l 



118 CORDEY ET AL. 

is assumed. Similarly, we use a K-point quadrature formula for integration over 0: 

sin ef(O) d8 s f e&9,). 
k=l 

(The trapezoidal rule has been used throughout this work for purposes of compati- 
bility with existing codes [2]. The conservative difference scheme used in these codes 
requires trapezoidal integration for particle conservation. Better accuracy in the Ov 
calculation could no doubt be achieved with higher-order integration formulas.) 
The numerical formula for the 19,~ integral in Eq. (6) at vi and vj’ is then 

Ajjpr = f P&OS elzk> “(u) UC”, , 
k=l 

with u a function of vj , vj, , and t9,,, , 
We then write 

where 

and 

Fijz = F&j> (i = a, b) 

Hence, the five-dimensional integral which appears after performing the trivial 
4 integration in Eq. (2) actually reduces to a triple sum, which can be performed 
very rapidly. 

It is important to note that the coefficients ljj,l do not involve the distribution 
functions. Hence, they need be evaluated only once for any velocity mesh. In other 
words, they are evaluated only at the beginning of a calculation in which distribution 
functions and reaction rates are followed in time. Making use of the symmetry 

also saves both computer time and storage. The amount of storage required for these 
coefficients is 

J(J + l)(L + 1) 
2 

locations. The computer time required for the initial calculation of the Ijjrl is approxi- 
mately 

(4.5 x 10-6)(J)(J + I)(K)(L + 1) seconds 
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on a CDC 7600 computer. Each time that Eq. (8) is computed requires approximately 

2.5 x 10-6(K + gJ)(L + l)(J) seconds. 

Note that this expression also includes the time required to compute the coefficients 
Fijz . The setup time, computation time, and storage requirement are given in Table I 
for a typical run with J = 61, K = 21, and L = 4. 

TABLE I 

Setup Times, Computation Times, and Storage Requirements for the Three Methods when Applied 
to Distribution Function Arrays Dimensioned 61 x 21a 

Method 
Time to precompute Time to compute 

coefficients (set) -u(sec) 
Storage 
required 

Fast (3-D) Legendre 1.8 0.05 9455 
Slower (4-D) Legendre 162 0.09 17019 
Trapezoidal rule (5-D) Insignificant 85 Insignificant 

a The Legendre expansions were truncated at L = 4. Setup time and storage requirements for the 
trapezoidal rule are only those required to define the coefficients for one-dimensional integration 
over U, 0 and 4. 

3. OTHER SCHEMES 

A second method [4] also involves the expansion of the reactingdistribution functions 
in Legendre polynomials; however, in this case the vector v’ receives no special 
treatment and is represented as (v’, 0’, I$‘) relative to the same (x, y, z) axis as the 
vector v. We obtain a relation 

where 

x f sin 8’ de’&, e)f+‘, et) Jo2ff d# U(U) 24, 

u = [v” + lP - ~VV'(COS 8 cos ef + sin e sin 8’ cos &]‘/2. 

Aside from expanding the distribution functions in a Legendre series, we must also 
expand the integral over 4 in a double Legendre series. One obtains an expression of 
the form 
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The computation is then streamlined by making use of the symmetries 

and the odd-even parity of the Legendre functions. The resulting array of coefficients 
requires 

.J(J + I)@/2 + 1y2 

storage locations when L is even. For the case L = 4, storage requirements are 
80 % greater than for the preceding method. Furthermore, these coefficients are more 
expensive to compute, involving on the order of 90 times the computer time for a 
0 mesh of 21 points. Referring to Table I, we note that each computation of Ov 
requires about 0.09 seconds for the mesh described above as opposed to 0.05 seconds 
for the more efficient method (since there are 80% more coefficients and resulting 
operations.) 

Using the fusion reaction cross section of Kuo-Petravic et al. [5], these two methods 
and a straightforward five-dimensional trapezoidal integration procedure were com- 
pared for a variety of distribution functions, including highly anisotropic 
(&dependent) cases. The answers differed by less than 1 % for the values of J, K, 
and L mentioned previously. To emphasize the savings resulting from use of Legendre 
expansions for this type of calculation, we note that about 85 seconds were required 
for each computation of Ou employing the trapezoidal integration with the above 
mesh. (See Table I.) Hence, the computation times for the two Legendre methods are 
insignificant. Even the setup time for the fast method is much shorter. An interesting 
but moot point is that it takes longer to perform one Ov computation via the longer 
four-dimensional Legendre method than via the trapezoidal rule, because of the setup 
time. 

4. CONCLUDING REMARKS 

The fast Legendre expansion method has been applied successfully to counter- 
streaming (hence anisotropic) deuterium-tritium distributions (see Ref. 6.) It has 
been incorporated in Fokker-Planck codes in which the fusion reaction rate is followed 
in order to provide source terms for reaction products (e.g., alpha-particles.) 

REFERENCES 

1. A. H. FUTCH, J. P. HOLDREN, J. KILLEEN, AND A. A. MIRIN, Plasma Phys. 14 (1972), 211. 
2. J. KILLEEN, A. A. MIRIN, AND M. E. RENSINK, The Solution of the Kinetic Equations for a Multi- 

species Plasma, in “Methods in Computational Physics,” Vol. 16, Chap. XI, Academic Press, 
New York, 1976. 

3. P. M. MORSE AND H. FESHBACH, “Methods of Theoretical Physics,” Vol. II, p. 1274, McGraw- 
Hill, New York, 1953. 



NEW EXPANSION METHOD FOR ?iij 121 

4. K. D. MARX, M. G. McCoy, A. A. MIRIN, M. E. RENSINK, AND J. KILLEEN, “A Legendre Ex- 
pansion Method for Computing Ov for Reactant Distribution Functions,” UCRL-78362, April, 
1976. 

5. L. G. KUO-PETRAVIC, M. PETRAVIC, AND C. J. H. WATSON, in “Proceedings of the International 
Conference on Nuclear Fusion Reactors, Culham, England, 1969,” Paper 2.4. 

6. K. D. MARX, A. A. MIRIN, M. G. MCCOY, M. E. RENSINK, AND J. KILLEEN, Nucl. Fusion 16 
(1976), 702. 

RECEIVED: May 26, 1977; REVISED: September 1, 1977 

J. G. C~RDEY 
C&am Laboratory, 

EURATOMIVKAEA Fusion Association, 
Abingdon, Oxfordshire OX 14 308, 

United Kingdom 

AND 

K. D. MARX,* M. G. MCCOY, A. A. MIRIN,* AND M. E. RENSINK 
Lawrence Livermore Laboratory, 

Livermore, California 94550 

*Also Department of Applied Science, University of California, Davis/Livermore, California. 


